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AMrad. The radiat Sdxdmger equation is converted to a recursive equation which can 
be treated d a c t o d y  by a p ” b k  pocket calculator. Specimen calculations show 
that the eigenvalue error varies wry smoothly with tbe integration step width h. The 
method is applied to a problem for which the traditional energy perturbation series is 
apparently divergent asymptotic. 

1. Introduction 

The determination of the eigenvalues of the SchrBdinger equation is most often carried 
out using variational methods, which involve the calculation of matrix elements and also 
the choice of suitable basis functions. If only the eigenvalues and certain expectation 
values are required, it may be easier to use a direct numerical method which replaces the 
Schriklinger differential equation by one or more finite difference equations. Hawk and 
Hardcastle (1976) have recently achieved good results for the helium atom using such 
an approach, but considerable computer capacity is needed to handle such a problem. 
In the present letter we deal with a much more simple case, the Schrodinger equation 
for one particle in a central field, and show that it is possible to attack the problem in 
such a way that useful eigenvalue estimates can be made using some of the less 
expensive types of programmable pocket calculator. The basic theory is developed in 
0 2, and an example is given to show the characteristic features of the method. Section 3 
uses the method to investigate a problem of interest in perturbation theory, and 0 4 
briefly discusses possible extensions of the work which allow the calculation of 
expectation values. 

2. Basictheory 

We start from the SchrBdinger equation in atomic units, 

-iV’l/l+ Vl/l =E$ 

where V is some central potential. We assume J, to take the form C&&(r) where 9, is a 
solid harmonic of degree 1 (e.g. x or x y ) .  Making this substitution in (l), and multiplying 
throughout by r, leads to an equation for the function 4 : 

2r( V -  EM = rD2+ +(U +2)W (2) 
(we adopt the usual notation D = d/dr). The next step is the introduction of the finite 
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difference approximation, which we accomplish by means of the simple replacements of 
‘first principles’ calculus, 

h2D24 + 4 ( r + h ) + q j ( r - h ) - 2 4 ( r )  

2hD4 +4(r +h)-c$(r -h) .  
(3) 

(4) 

The resulting difference equation will, of course, only simulate (1) exactly in the limit 
h + O ,  but we shall see that surprisingly good results for E can be obtained without 
approaching the limit too closely. The step which is crucial to our method is the final 
one, the introduction of a ratio variable R ( r ) ,  defined by the equation 

4@ + h )  = R (r)4(r) .  ( 5 )  

With the substitutions (3), (4) and (5 ) ,  the differential equation (1) is converted to a 
recursive equation for the calculation of the values of R ( r ) :  

2 4 1  + h2( V-E)] = R ( r ) [ r  + h(l + l)] + [ r  - h(l + l)](R (r - h))-’. (6) 

Equation (6) has an obvious advantage in that only one calculated number, R ( r  - h ) ,  
needs to be stored (together with the r value) in order to proceed to R(r ) .  This 
simplification means that the method described here will work on a programmable 
calculator with quite limited memory capacity. For the special case of a one- 
dimensional Schrodinger equation the equation analogous to (6) is the equation 

2[ 1 + h 2 (  V-E)] = R (x) +(R(x - h))-l (7) 

and this equation has been applied to the study of a perturbed harmonic oscillator 
(Killingbeck 1977a). Inspection of equation (6) shows that it has a further remarkable 
feature; if the starting point is chosen at r = h ( l +  l ) ,  then R (hl)  can be assigned any 
finite value without disturbing the calculation at larger r values. This simplification is 
presumably related to our initial postulated form for 4, and would merit further 
investigation; however, if we just accept it as a bonus and proceed with the calculation, 
it leads to satisfactory results, as we see in our following examples. 

To determine the ground state eigenvalue for the states with angular momentum 1, 
we use some initial estimate of E in the equation (6), with any non-zero value for R (hl) ,  
and with some small h value. The value of R(r )  as r increases will either become 
negative (at one r value) or pass through unity from below. The first occurrence shows a 
node in the approximate $, and indicates that the E estimate was too high; the second 
occurrence shows that 9 is increasing with r, which suggests that E was too low. Trying 
various E values leads to a ‘sandwiching’ of the energy value between upper and lower 
bounds, finally giving some energy estimate E@).  Changing h will change E ( h )  until it 
approaches the required true eigenvalue in the limit h + 0. Table 1 shows the way in 
which the energy estimate varies for the particular case of the Hamiltonian (1) with the 
potential V = hr - r - ’ ;  the E ( h )  values were determined to four decimal places at each h 
value. As an interesting practical detail, we note that the two requirements R < 0 or 
R > 1 can be written as the single requirement R 2 - R  > O  which needs only one 
conditional jump instruction in the calculator program. The calculations were carried 
out on a Casio fx-201 calculator. This calculator can be programmed to make step-like 
changes in the trial E values automatically if desired. Such a facility is not essential, of 
course, and the method was also tested successfully on the less powerful Prinztronic 
Program calculator. 
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Table 1. SpecimenE(h) values for V=Ar-r- ' .  

0.2 0.1 0.05 0 
State 

1s 0 
1 

2s 0 
1 

2P 0 
1 

3d 0 
1 

-0.4815 
0.6055 

-0.1238 
2.3961 

-0.1238 
2.0072 

-0.0553 
2.9283 

-0.495 1 
0.5841 

-0.1247 
2.4359 

-0.1247 
1.9815 

-0.0555 
2.8778 

-0.4988 
0.5794 

-0.1249 
2.4465 

-0.1249 
1.9759 

-0.5555 
2.8666 

-0.4997 
0.5782 

-0.1250 
2.4492 

-0.1250 
1.9746 

-0.5556 
2.8639 

-0.5000 
0.5778 

-0.1250 
2.4501 

-0.1250 
1.9742 

-0.0556 
2.8630 

In general we would expect the eigenvalue estimate to approach its limiting value in 
a manner described by a power series in h ', and a study of table 1 shows that the error is 
proportional to h2 up to surprisingly large h values. If there is also an h 4  term in the 
error, then the following extrapolation formula holds: 

Eo = k(64EI- 20E2 +EJ .  (8) 

Here EN denotes E(Nh). In the h2  region the simpler extrapolation formula 

(9) E -1 o - s(4Ei-E~) 

holds. Since the time taken to perform each traverse along the r axis varies as h-I, it is 
clearly useful to be able to find Eo accurately while using only fairly large h values. Even 
the use of (9) with h =Om2 gives a good estimate of E,, in our example. (The same 
feature also appeared in a trial calculation of the 1s eigenvalue for the potential 
V =  -r-' exp(-r), for which the eigenvalue -0.0103 was obtained.) Table 1 includes 
results for the 2s state, i.e. the first excited s state. These were obtained by applying the 
criteria explained above only after I++ had already passed through one node, thus 
exploiting the traditional theorems about the increase in the number of nodes with the 
increase in the energy eigenvalue. Higher eigenvalues could be obtained by looking for 
functions with greater numbers of nodes. For the 2s state the E ( h )  values at A = 1 are 
lower bounds, whereas for the other states treated they are upper bounds. 

3. An application to perturbation theory 

The Hamiltonian (1) with V = hr -rP1 describes the influence of the perturbation hr on 
the hydrogen atom. For real positive A the 1s and other bound states are well defined, 
whereas for real negative A they are not. Such problems usually lead to divergent 
asymptotic series if traditional Rayleigh-Schrodinger perturbation theory is used to 
find the energy (Killingbeck 1977b). By using the method of 0 2, we have calculated the 
1s state eigenvalue for several A values in the range 0 < A  < 0.3, and these are given in 
table 2. If the series for the eigenvalue is written in the form 
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Table 2. A depenance of the b e s t  a@nmhe. 

A Numerical Series (12) Series (13) 

0.05 -0.4281 -0.4283 -0.4285 
0.10 -0-3610 -0.3616 -0-3610 
0.15 -0.2971 -0-2974 -0.2969 
0.20 -0.2357 -0-2330 -62357 
0.25 -0.1765 -0.1660 -0.1767 
0.30 -0-1193 -0-0939 -0.1193 

then the Rayleigh-Schrodinger theory gives 

The weak perturbation region is the region O<A =s 0-05 for this problem For A b 0.1 
the smallest term in the Raykigh-Schrijdinger series is the A term or a preceding one, 
and the ‘best estimate’ obtained by truncating at this term is not very close to our 
numerical results. We show instead in table 2 the average of the second- and 
third-order estimates, i.e. the result obtained with the choice 

This choice is suggested by the averaging process for asymptotic series as discussed by 
Morse and Feshbach (1953), and seems to give fair results. The results for the series 
with coefficients 

€ 1  = 1.4745; E Z =  -0.925; E 3  = 0.800; E” = o  (n>3)  (13) 

are also shown, and are even better. The latter series is obtained by fitting a third-order 
polynomial to our exacR energy values at A = 0.1,0.2,0.3, but it also works well at the 
other A values which are tabulated. The point to be noted here is that the ‘best’ 
polynomial in A for the energy may be quite different from that suggested by the formal 
perturbation series when the latter is asymptotic, particularly if the fit is required over a 
fairly wide range of A values. This feature is perhaps not always appreciated by workers 
who discuss the recovery of perturbation coefficients from numerical data. 

4. Discussion 

The method described in this letter is essentially a refined mathematical version of the 
kind of arguments (based on the curvature of the wavefunction) which are used in 
quantummechanics textbooks to explain the existence of discrete bound state energies. 
Our use of the ratio variable R(r)  renders the method simple to appiy, even to serious 
problems such as the perturbation problem studied in 9 3, while the results of 5 2 
indicate that the error in the energy varies as h 2  over an extended range of h values. 
Although in principle $(r )  can be constructed from the sequence of R ( r )  values when E 
has been determined accurately, it is clear that the method is best suited to the 
determination of energy eigenvalues. One way of finding expectation values from 
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energy calculations is to use the prescription 

(14) 
1 

( A )  --@(A +AA)-E(A -AA)) 
A - 2 A  

which yields correct values in the limit A + 0. For our calculations, which have been 
taken to only four decimal places, we might hope to get expectation values correct to 
two places if we use the small value A = 0.01. A trial calculation for the Hamiltonian of 
0 3 actually gave (r) = 1.50 (the correct hydrogenic value) at A = 0 and (r) = 0.90 at 
A = 1. Empirically it was noted that dE/dA depends only very weakly on h ;  table 1 
illustrates this for the large change O-, 1 of A. 

For problems involving simple r"-type perturbations of the hydrogen atom (or the 
harmonic oscillator) it is not too difficult to be confident about the number of nodes and 
the number of turning points which the exact wavefunction should have, and this 
knowledge can be used in the criteria for deciding whether the postulated E(h)  value is 
too high or too low. It would be interesting to investigate whether the simple criteria 
which suffice in this letter will work as easily for an arbitrary smooth potential; 
presumably the methods of Protter and Weinberger (1967) would be relevant in a 
formal approach to the problem. 
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